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DATA PROCESSING

Sequence Alignment

We use HHblits [1] (as suggested in [2]) to search
the Uniprot database starting from from the Pfam ki-
nase family seed (PF00069) in two passes. We modi-
fied the HHblits code (version 2.0.16) to overcome the
alignment size limit of 216. In the first pass we use
options -M 20 -n 2 -neffmax 1000 -all -e 1e-3 -p
90 -maxfilt 1000000 -B 200000 -Z 100000 to de-
tect kinase sequences with high p-value. We perform
a second pass using the first pass as a seed with extra
parameters -n 1 -global -mact 0 to obtain complete
kinase domains. We remove any sequences with gaps in
the “HRD” or “DFG” triplets, sequences missing the as-
partic acid required for Mg2+ binding, or more than 10
gaps, or more than 40 inserts, or with invalid/unknown
amino acids, leaving 127113 sequences of length 241.

Phylogenetic Filtering

Our ideal dataset would be a set of independent se-
quences in evolutionary “thermodynamic equilibrium”,
however in practice the observed sequences have phylo-
genetic relationships. As described in [3], we roughly ac-
count for phylogeny by reweighting sequences by their
frequency in the MSA. That is, we assign a weight
w = 1/n to each sequence, where n is the number of se-
quences in the alignment with greater than 40% sequence
identity to it (in the 21 letter alphabet). We compute
the dataset bivariate marginals with these weights. This
leaves an “effective” number of sequences Neff =

∑
w of

8149. We then trim the first 5 and last 61 positions from
the alignment which contain variable secondary struc-
tures, leaving 175 positions.

Alphabet Reduction

The computational cost of our inference procedure
(described below) is significant, and for a typical pro-
tein with L ≈ 200 positions and q = 21 residue types
there are

(
L
2

)
q2 ∼ 107 parameters to fit based on an equal

number of observed marginals. We mitigate this issue by
reducing the alphabet size. We randomly choose a posi-
tion in the alignment and find the pair of letters which,
when treated as identical, would minimize the root mean
square difference between the Mutual Information (MI)

scores for all
(
L
2

)
position pairs in the reduced alphabet

and full 21 letter alphabet. The MI score is calculated as

MIi,j =
∑
α,β f

ij
αβ log(f ijαβ/f

i
αf

j
β). This is repeated until

all positions have been reduced by one letter, which is
repeated until all positions have been reduced to 8 let-
ters. This is robust to the random realization and allows
the alphabet reduction to differ across positions.

Unlike amino acid reduction schemes based on physio-
chemical properties, this method is designed to preserve
the correlation structure of the MSA. It also reduces the
effect of sampling error in each measured marginal. For
the kinase MSA we find that reduction to 8 letters is a
suitable compromise between reducing the problem size
and preserving the sequence correlations (figure S1B),
and captures almost all the sequence variation: Kinase
sequences which have 27% average pairwise identity with
21 letters still only have 31% identity with 8 (figure S1A).
Further justifying this choice, the mean effective num-
ber of amino acids at each position of our raw dataset
is 8.9, computed by exponentiating the site-entropy as

qeff
i = e−

∑
α f

i
α log fiα .

Finite Sample Size Correction

We add a small pseudocount to the bivariate marginals
computed from the dataset as a finite size correction.
Adding a small flat pseudocount (e.g. of 1/N) would be
equivalent to adding a small number of completely ran-
dom sequences to the original sequence dataset. Instead
we add a pseudocount to mimic a dataset composed the
original sequences but with a small per-position chance
µ of mutating to a random residue. With this strategy
the pseudocounted bivariate marginals are given by

(f ijαβ)pc = (1− µ)2f ijαβ +
(1− µ)µ

q
(f iα + f jβ) +

µ2

q2
(1)

We choose a pseudocount parameter of roughly µ =
1/Neff.

PDB datasets

We collect 2869 kinase structures from the PDB
database by searching for Uniprot IDs corresponding
to Mouse and Human kinases according to the Uniprot
database. We align their sequences to the Uniprot
dataset, and further filter on the following criteria: We
remove any sequences with more than 32 gaps after align-
ment, structures which were crystallized with SH2 do-
mains present (which may crystallize into unusual con-
formations), structures in which the activation loop is



unnaturally extended due to interactions across the crys-
tal unit cell (e.g. PDB-ID 2WTC), and structures classi-
fied as DFG-in but in which the expected β-3 sheet Lys
to α-C helix Glu salt bridge distance is more than 5Å .
This filtering was performed through cutoffs on relevant
residue-residue distances. We use annotation from the
KLIFS database. Most structures in the KLIFS anno-
tation contain a ligand. The observation of structures
in the DFG-out and DFG-in conformations reflect a se-
quence’s ability to take on that conformation in the pres-
ence of a ligand when crystallized. A sequence with a
high penalty for the DFG-out state will be unable to take
on that conformation even in the presence of a type-II
ligand.

We use PCA analysis of the structures based on 351
atom-atom pair distances which may be related to the
DFG-in to DFG-out transition. When projected onto
the first two principal components the structures form
three clusters (figure S2). Many sequences classified as
DFG-in by the KLIFS database are in an inactive Src-
like conformation[4] in a cluster with PCA1> 30. We
limit our analysis to structures with PCA1< 30, al-
though we find using the full dataset does not quali-
tatively change our results. The DFG-in and DFG-out
structures in the regions bounded by dashed boxes are
used to calculate the DFG-out penalty score.

Contact Scores

A number of different methods have been suggested for
obtaining a position-pair interaction score from the Potts
model, including the “Direct information” [5], Frobenius
norm [6], and APC-corrected Frobenius norm [7]. These
methods account in different ways for the degeneracy of
the Potts model parameters. As described in [3], while

there are
(
L
2

)
q2 bivariate and Lq univariate marginals

only
(
L
2

)
(q − 1)2 + L(q − 1) of these are independent,

with corresponding “gauge freedoms” in the J . One
way to account for the degeneracy is to choose a par-
ticular gauge. Sets of parameters in one gauge may be
transformed to another gauge by a certain set of gauge
transformations while keeping all sequence probabilities
fixed, for example adding or subtracting a constant from
all the parameters.

We score interactions using a weighted Frobenius norm
(see figure 1 in the main text), in which we first trans-

form to a gauge which satisfies
∑
α w

ij
αβJ

ij
αβ = 0, and

then compute the score
√∑

αβ(wijαβJ
ij
αβ)2. In the case

the weights wijαβ = 1 this reproduces an unweighted
Frobenius norm calculation. For the purpose of con-
tact prediction we use wijαβ = f ijαβ , which, like the un-
weighted Frobenius norm, will give a score of 0 for un-
coupled positions, but also downweights the contribu-
tion of couplings corresponding to infrequently observed
mutant pairs which have high sampling error. For the
kinase model with this score, 94% of the top scored 200
position-pairs greater than 4 positions apart along the

sequence are contacts in at least 20% of structures in
our PDB dataset with a 8Å nearest atom-atom contact
cutoff distance, and 84% of the top scored 200 pairs are
observed contacts with a 6Å cutoff.

Details of PMF calculation

We perform the threaded calculations using the (fully

constrained) “zero gauge”, in which
∑
α J

ij
αβ = 0, as

this gauge has the property that uncoupled positions
will have J ijαβ = 0, suggesting that coupling values in
this gauge may be interpreted as pairwise interaction
strengths, and the lack of weighting means that individ-
ual coupling values are less affected by the presence of
rare mutants in the dataset.

The DFG-in conformations typically have slightly
more contacts than the DFG-out state, and therefore
sum over a larger number of couplings. Since most cou-
plings in evolved sequences are negative, this means the
DFG-in state will have a lower threaded energy than
the DFG-out state purely due to the different number
of contacts. However the individual couplings used to
compute DFG-in threaded energies are not significantly
lower on average than the average coupling in the DFG-
out threaded energies.

INVERSE ISING INFERENCE

The Inverse Ising inference procedure we use to infer
the Potts model parameters proceeds by Markov Chain
Monte Carlo (MCMC) sampling of sequences from a trial
Potts Hamiltonian to obtain trial marginals, followed by
a quasi-Newton parameter update step.

MCMC sampling

Following [8], we estimate marginals by generating se-
quences through MCMC on the Potts Hamiltonian for a
given trial set of couplings. This method is mainly lim-
ited by sampling error and by the need for the simulation
to reach equilibrium. We perform the computation on
GPUs. Each work-unit of the GPU performs a MCMC
walk, which proceeds by random point mutations to the
protein sequence. As an optimization for the GPU all
work units mutate the same random position simulta-
neously, but the mutant residue identity is computed
independently.

The GPU gives an appreciable speedup over CPU. For
our problem a Nvidia GeForce GTX Titan X GPU eval-
uates 1.4 × 108 MC steps per second for the L = 175,
q = 8 system. In comparison, an 8-core 3.40GHz Intel
Core i7-3770 CPU evaluates 3.6 × 106 steps per second
with a nearly identical implementation. We ultimately
run the inference using 4 GPUs in parallel.

2



Quasi-Newton optimization

We seek the set of fields h and couplings J which re-
produce the data marginals f target after sampling the
model marginals f by MCMC. In [8], a quasi-Newton
approach was developed in which a step direction in J
and h was determined by inverting the system’s Jaco-
bian. The expected change in marginals ∆f due to a
change in J and h is given to first order by

∆f ijαβ =
∑
xyab

∂f ijαβ
∂Jxyab

∆Jxyab +
∑
xa

∂f ijαβ
∂hxa

∆hxa (2)

with a similar relation for ∆f iα. By computing the Ja-

cobian
∂fijαβ
∂Jxyab

and inverting the linear system of equation

2, we can solve for the step ∆J and ∆h which would
give a desired ∆f chosen to minimize the difference be-
tween model and data bivariate marginals. We choose
∆f = γ(f target − f) and the damping factor γ is chosen
small enough for the linear approximation to be valid.

A complication is that the f are not all independent
due to “gauge freedoms”, as described above. Because
of this, equation 2 is noninvertible. However we may still
solve the (nonindependent) linear system for any of its
non-unique solutions, which will still produce the desired
change ∆f . Furthermore, using a nonindependent set
of parameters allows simplification of the problem: We
transform to a “fieldless” gauge in which hiα = 0, as the

remaining
(
L
2

)
q2 couplings span the solution space. We

only fit the bivariate marginals, which fully determine
the univariate marginals.

In a fieldless gauge, we then seek to solve the simplified
problem

∆f ijXY =
∑
klαβ

∂f ijXY
∂Jklαβ

∆Jklαβ . (3)

The Jacobian is given by

∂f ijXY
∂Jklαβ

= −f ijklXY αβ + f ijXY f
kl
αβ . (4)

where f ijklXY αβ is a 4th-order marginal, which reduces to
lower order marginals in the cases where the upper in-
dices are equal to each other, and equals 0 in the case
that two upper indices are equal but the corresponding
lower indices are different. Solving equation 3 is chal-
lenging as the Jacobian is an

(
L
2

)
q2 by

(
L
2

)
q2 matrix. For

L=200, q=8, typical of the problems we wish to solve,
the Jacobian has over 1012 elements and is too large to
store in computer memory. Following [8] we seek ap-
proximations to the linear system.

Self-Terms only

In [8], it is was assumed that each f ijαβ only depends

on the corresponding J ijαβ . That is

∆f ijαβ =
∂f ijαβ

∂J ijαβ
∆J ijαβ = (−f ijαβ + f ijαβf

ij
αβ)∆J ijαβ . (5)

This is trivially inverted to give

∆J ijαβ = −
∆f ijαβ

f ijαβ(1− f ijαβ)
. (6)

Independent Pairs

A relaxed assumption is that each pair of positions
is independent of other positions but each marginal de-
pends on all the couplings at the same positions, that
is, each f ijXY depends on J ijαβ for all α, β. This is equiv-

alent to a pair (L=2) system only, and in this section*
we drop the i, j indices. In this pair system there are
q2 − 1 independent marginals (ie, all but one of the bi-
variate marginals, subject only to

∑
fαβ = 1), and in

the fieldless gauge there are q2 couplings, and thus only
one gauge freedom. We seek to invert

∆fXY =
∑
αβ

∂fXY
∂Jαβ

∆Jαβ . (7)

Substituting equation 4 and dividing by fXY , this can
be rewritten as

(−Ī + F̄ )
−→
dJ =

−−→
df/f (8)

where
−−→
df/f is a vector with components ∆fXY

fXY
, Ī is the

identity matrix and F̄ is a matrix whose rows are the
bivariate marginals. By rearranging and seeking an iter-
ative solution, one finds this is solved (up to a constant
due to the gauge freedom) by

∆Jαβ = −∆fαβ
fαβ

. (9)

Perturbed Marginals

The marginals required in the update step of equation
9 must be determined from a computationally demand-
ing MCMC sequence-generation run, but using a per-
turbative approach we evaluate the marginals for small
changes in couplings without regenerating a new set of
sequences, allowing many more approximate coupling
update steps per round of MCMC.

When sampling N sequences for a set of couplings J ,
we expect to generate ns ∼ e−Es sequences of type s.
If we perturb the couplings to a new set J ′, we would
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expect n′s ∼ e−E
′
s . We can simulate the effect of perturb-

ing the marginals (without regenerating any sequences)
by weighting the original set of sequences by a weight
ws = e−(E′

s−Es), giving n′s = wsns. As N → ∞ this
approximation becomes exact. We calculate perturbed
marginals f̃ as

f̃ ijXY =
1

Ñ

∑
s∈Sd

δ
sisj
XY e

−(E′
s−Es) Ñ =

∑
s∈Sd

e−(E′
s−Es)

(10)
where s runs over our sequence dataset Sd. We find
this approximation works quite well and is very quick to
compute.

The accuracy of the approximation decreases as the
coupling perturbation is increased because the overlap
between the previously sampled sequences and “true” se-
quence distribution becomes small. In practice we limit
the number of coupling update steps per MCMC round
to a number chosen heuristically such that the bivariate
marginals from the regenerated sequences are not too
dissimilar from the prediction of the perturbed calcula-
tion.

Damping

The coupling update step consists of repeated calcu-
lation of weighted marginals followed by small updates
to the couplings J . If the change in J per step becomes
too large the updated set of couplings may take the sys-
tem far from its previous position, preventing smooth
progress towards the optimal solution. We account for
this in part through the parameter γ described above,
which we dynamically update. Additionally, to avoid di-
vergent step sizes (ie, to avoid division by zero in equa-
tion 9 if f = 0) we use a modified step direction by
adding flat pseudocount fpc to the marginals to get pseu-
docounted marginals f̄ , with

f̄ =
f + fpc

1 + fpcq2
. (11)

Using these pseudocounted marginals in equation 9 we
obtain a modified step direction

∆J̄αβ = −∆f̄αβ
f̄αβ

= − ∆fαβ
fαβ + fpc

. (12)

The optimized solution for J will be independent of
fpc since at the solution ∆f̄αβ = ∆fαβ = 0, and the
pseudocount can be viewed as a damping factor. This
pseudocount damping decreases the relative step size for
couplings corresponding to small marginals where diver-
gence is more likely, at the expense of increasing the
number of necessary steps.

We find that it is useful to use a high value for fpc

such as 0.1 when the system is far from the solution, and
as the system approaches the optimal solution (and the
typical step sizes becomes smaller) fpc can be decreased.

Inference Procedure

To perform the inference, we initialize J to values
corresponding to an “independent” model where hiα =

− log f iα and J ijαβ = 0 (and transform the the fieldless

gauge), and choose an initial random sequence S0. In
each round of MCMC sequence generation we generate
a set of sequences given the couplings J by running up
to 131072 threads in parallel on the GPU, where each
thread is an independent MCMC run starting from S0.
We equilibrate for a burn-in period of roughly 106 to 107

steps, and then collect samples of sequences at fixed in-
tervals of MC steps, thus performing both a time and
ensemble average. For the kinase inference we take 64
samples at intervals of roughly 105 steps, producing a to-
tal sequence set of up to 8 million sequences. Based on
this sequence set we perform 64 perturbed coupling up-
date steps using equation 12 with γ initialized to a value
γ0. If the bivariate marginal sum of squared residuals
increases in any coupling update step, we halve γ and
repeat the step, and otherwise double γ every 16 steps.
We then assign a random sequence from the sequence
sample to S0 and repeat.

For the kinase inference, we perform three sequen-
tial inference rounds with different parameter values.
We first minimize with fpc = 0.1 for 15 rounds of
MCMC generation with 16384 GPU threads equilibrated
for 2.8 × 106 MC steps, followed by 15 rounds with
fpc = 0.01, each with 32768 GPU threads and 5.7× 106

MC steps of equilibration, and finally run 30 rounds
with fpc = 0.001, each with 131072 GPU threads with
6.4 × 106 MC steps of equilibration. In all cases γ0 =
0.004 and the inter-sample time is chosen such that the
total samping period is equal to the equilibration period.
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FIG. S1. Distribution of sequence identity scores (normalized inverse Hamming distance) between all pairs of sequences in
the kinase dataset, computed for the original sequences using a 21 letter alphabet of 20 residues plus gap with phylogenetic
weighting, and for the reduced 8 letter alphabet. The mean sequence identity is 27% for 21 letters and 31% for 8 letters.

FIG. S2. PCA analysis of PDB structures, showing all structures (black) as well as structures annotated in the KLIFS
database as DFG-in (red) and DFG-out (blue). Many sequences classified as DFG-in in the KLIFS database are in an inactive
Src-like conformation (upper cluster).The DFG-in and DFG-out structures in the regions bounded by dashed boxes are used
to calculate the DFG-out penalty score.
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